skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hemaspaandra, Edith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The first step in classifying the complexity of an NP problem is typically showing the problem in P or NP-complete. This has been a successful first step for many problems, including voting problems. However, in this paper we show that this may not always be the best first step. We consider the problem of constructive control by replacing voters (CCRV) introduced by Loreggia et al. [2015, https://dl.acm.org/doi/10.5555/2772879.2773411] for the scoring rule First-Last, which is defined by (1, 0, ..., 0, -1). We show that this problem is equivalent to Exact Perfect Bipartite Matching, and so CCRV for First-Last can be determined in random polynomial time. So on the one hand, if CCRV for First-Last is NP-complete then RP = NP, which is extremely unlikely. On the other hand, showing that CCRV for First-Last is in P would also show that Exact Perfect Bipartite Matching is in P, which would solve a well-studied 40-year-old open problem.Considering RP as an option for classifying problems can also help classify problems that until now had escaped classification. For example, the sole open problem in the comprehensive table from Erdélyi et al. [2021, https://doi.org/10.1007/s10458-021-09523-9] is CCRV for 2-Approval. We show that this problem is in RP, and thus easy since it is widely assumed that P = RP. 
    more » « less
  2. null (Ed.)
    The computational study of election problems generally focuses on questions related to the winner or set of winners of an election. But social preference functions such as Kemeny rule output a full ranking of the candidates (a consensus). We study the complexity of consensus-related questions, with a particular focus on Kemeny and its qualitative version Slater. The simplest of these questions is the problem of determining whether a ranking is a consensus, and we show that this problem is coNP-complete. We also study the natural question of the complexity of manipulative actions that have a specific consensus as a goal. Though determining whether a ranking is a Kemeny consensus is hard, the optimal action for manipulators is to simply vote their desired consensus. We provide evidence that this simplicity is caused by the combination of election system (Kemeny), manipulative action (manipulation), and manipulative goal (consensus). In the process we provide the first completeness results at the second level of the polynomial hierarchy for electoral manipulation and for optimal solution recognition. 
    more » « less